## Up to 24kV

# Compact AIS 

Compact Air Insulated Switchgear

## Up to 24kV

## Compact Air Insulated Switchgear

Contents

- Features …
- General characteristics $\cdots+0$
- Applications $-\square=0$
- Units $\cdots+\quad$ -
- Internal arc protection … $\quad$ - 11
- Considerations for high altitude installation $\cdots \cdots \cdots \quad 12$
- SM VCB $\cdots+\square$
- SM LBS …
- Options for Compact AIS
- Digital protection relay $\cdots \cdots+3$
- Order form $-\square \triangle$
- Certificates $\square \square \square \square \square \square \square$



## Features

## Reliability \& Safety

- Type testing is complete for all models according to latest standard, IEC62271-200
- Internal arc proofed $21 \mathrm{kA} / 1 \mathrm{~s}$
- Earthing of both the whole switchboard structure and the metal division between the compartments
- Mechanical interlocks which assure the exact operation sequence
- Protection Classes: PI (insulating partition)
- Loss of service continuity classes: LSC2A (LSC1 for bus riser)
- IP3X protection degree on the external housing
- High voltage indication system in each cubicle


## Optimization

- Reduced dimensions and weights
- Less space requirement for switchboard installation
- Easy integration in factory-built outdoor substations
- A solution adapted to cable connection
- Modular units containing fixed and withdrawable metal-enclosed switchgear, using vacuum


## Simplicity

- Simplified switchboard busbar design
- Mimic diagram front of the switchboard by means of simple and functional devices


## General characteristics

## Electrical characteristics

| Type |  | Rating |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated voltage |  | Ur |  | 12 | 17.5 | 24 |
| Rated frequency |  | $f r$ | Hz | 50/60 |  |  |
| Insulation level |  |  |  |  |  |  |
| Power frequency withstand voltage | Insulation | Ud | 1 min (kV rms) | 28 | 38 | 50 |
|  | Isolation | Ud | 1 min (kV rms) | 32 | 45 | 60 |
| Lightning impulse withstand voltage | Insulation | Ud | 1.2/50 s (kV peak) | 75 | 95 | 125 |
|  | Isolation | Ud | 1.2/50 s (kV peak) | 85 | 110 | 145 |
| Breaking capacity |  |  |  |  |  |  |
| Rated current |  | Ir | A | 630 |  |  |
| Short-time withstand current |  | Ik/tk | kA/s | $16 \mathrm{kA} / 3 \mathrm{~s}, 21 \mathrm{kA} / 3 \mathrm{~s}, 25 \mathrm{kA} / 1 \mathrm{~s}$ |  |  |
| Making capacity ( 50 Hz ) |  | Ima | kA | 40 / 50 / 54.6 |  |  |
| Internal arc classification |  | IAC | kA/1 s | 21 (A-FLR): Option |  |  |

## IEC standards

| IEC 62271-1 | High-voltage switchgear and controlgear <br> Part 1: Common specifications |
| :--- | :--- |
| IEC 62271-100 | High-voltage switchgear and controlgear <br> Part 100: Alternating-current circuit-breakers |
| IEC 62271-102 | High-voltage switchgear and controlgear <br> Part 102: Alternating current disconnectors and earthing switches |
| IEC 62271-103 | High-voltage switchgear and controlgear <br> Part 103: Switches for rated voltages above 1kV up to and including 52kV |
| IEC 62271-105 | High-voltage switchgear and controlgear <br> Part 105: Alternating current switch-fuse combinations |
| IEC 62271-200 | High-voltage switchgear and controlgear <br> Part 200: AC metal-enclosed switchgear and controlgear for rated <br> voltages above 1kV and up to and including 52kV |

## Normal operating conditions

| Ambient air pollution | No significant pollution by dust, smoke, corrosive and/or flammable gases, vapours or salt. |
| :---: | :--- |
| Ambient air temperature | Less than or equal to $40^{\circ} \mathrm{C}$ <br> Less than or equal to $35^{\circ} \mathrm{C}$ on average over 24 hours <br> Greater or equal to $-5^{\circ} \mathrm{C}$ |
| Altitude | Less than or equal to 1000 m |
| Humidity | Average relative humidity over a 24 hour period, less than or equal to $95 \%$ <br> (average relative humidity over a 1 month period, less than or equal to $90 \%$ ) |

## Building



- Office building
- Hotel and resort
- Shopping mall
- Hospital
- University


## Industry



- Manufacturing industry
- Small size power plant
- Wind power plant


## Utility/Public



- Secondary electricity distribution network
- MV/LV distribution transformer substation
- Airport


## Units Functions



LU
Load break switch unit


CU-A
Single-isolation, disconnectable circuit breaker unit


GAU
Incoming cable-connection unit with earthing


FU
Fuse switch combination unit


## CU-W

Withdrawable single-isolation circuit breaker unit


SU
Section unit with double-isolation, disconnectable circuit breaker right or left outgoing line


PU
Voltage transformers unit for mains with earthed neutral system


## CU-AP

Single-isolation, disconnectable circuit breaker unit with PT


## MU

Metering unit

LU - Load break switch unit $\qquad$


- $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ :
$375 \times 1,700 \times 1,070$
- Load break switch



## Base unit

- 3-position load break switch rated 630A for load breaking and earthing
- Key interlock



## Optional components

- Motor operation for load break switch
- Voltage detector
- Gas guage (Selection recommended)


## FU - Fuse switch combination unit



- $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ : $375 \times 1,700 \times 1,070$
- Fuse switch combination
- Power fuse
- External E/S



## Base unit

- 3-position fuse-switch combination with earthing switch
- Key interlock
- Power fuse: 63A
(Unit: mm)



## Optional components

- Motor operation for fuse-switch combination
- Voltage detector
- Gas guage (Selection recommended)


## PU - Voltage transformer unit



- $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ :
$500 \times 1,700 \times 1,070$
- Fuse switch combination
- Power fuse
- Voltage transformer



## Base unit

- 3-position fuse-switch combination with earthing switch
- Key interlock
- Power fuse: 1A


Optional components

- Motor operation for load break switch
- Voltage detector
- Gas guage (Selection recommended)
- Voltage transformer


## CU-A/CU-W - Circuit breaker unit

$\qquad$


- $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ :
$750 \times 1,700 \times 1,070$
- Load break switch
- Vacuum circuit breaker
- Current transformer
- External E/S



## Base unit

- 3cycle circuit breaker
- SM-VCB Auxiliary contacts: 4a4b
- 3-position load break switch rated 630A
- Key interlock
(Unit: mm)



## Optional components

- Motor operation for load break switch
- Voltage detector
- Gas guage (Selection recommended)
- Protective relay
- Current transformer

CU-AP - Circuit breaker unit with PT $\qquad$


- $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ : $750 \times 1,700 \times 1,070$
- Load break switch
- Vacuum circuit breaker
- Current transformer
- Voltage transformer
- External E/S



## Base unit

- 3cycle circuit breaker
- SM-VCB Auxiliary contacts: 4a4b
- 3-position load break switch rated 630A
- Key interlock


## GAU - Incoming cable-connection unit



- $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ :
$500 \times 1,700 \times 1,070$
- External E/S
- Lightning arrester


21kA E1 class E/S


21kA EO class E/S


## Optional components

- Voltage detector
- Lightning arrester

SU - Section unit


- $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ :
$750 \times 1,700 \times 1,070$
- Load break switch
- Vacuum circuit breaker
- Current transformer
- External E/S



## Base unit

- 3cycle circuit breaker
- SM-VCB Auxiliary contacts: 4a4b
- 3-position load break switch rated 630A
- Key interlock


Optional components

- Motor operation for load break switch
- Voltage detector
- Gas guage (Selection recommended)
- Protective relay
- Current transformer


## MU - Metering unit

$\qquad$


- $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ : $750 \times 1,700 \times 1,070$
- Load break switch
- Current transformer
- Voltage transformer



## Base unit

- 3-position load break switch rated 630A
- Key interlock
(Unit: mm)


Optional components

- Gas guage (Selection recommended)

LS Compact AIS is designed to enhance user safety with internal arc structure so that an operator can be protected from effects of an internal arc fault. LS Compact AIS has passed internal arc tests in conformity with IEC 62271-200.

## Layout examples

Example of installation of compact AIS


## Top view



Front view


Side view


## Features

## Internal arc withstand

- Classified IAC: A-FLR (4-sides internal arc protection) - 21kA/1s
- Arc duct type
- Arc duct is necessary on the top of the switchgear
(1) supplied
(2) not supplied



## For user safety

- Compartment type enclosure
- Metal division between the compartments
- safety devices
- Voltage indication system
- Mechanical interlocks for accurate operation sequence
- Technologies for safety
- Structural design \& analysis
: Arc relief structure
- Insulation design
: Reliability of insulation materials
- Electromagnetic field analysis


## Considerations for high altitude installation

The installation at an altitude above 1,000m has an impact on the dielectric behavior of medium voltage air insulated switchgears. For this reason, some factors must be considered in operating medium voltage air insulated switchgears in high altitude conditions.

## Altitude correction factors for insulation

As the altitude increases, the dielectric strength of insulation decreases due to the reduced air density. For installation at an altitude higher than $1,000 \mathrm{~m}$ above sea level, the insulation withstand level of external insulation at the service location shall be determined by multiplying the rated insulation levels by a factor "Ka" in accordance with below formula. (IEC 62271-1 standards)

$$
K_{a}=e^{m(H-1000) / 8150}
$$

$\mathrm{H}=$ altitude in meters
$m=1$ (for power-frequency, lightning impulse and phase-to-phase switching impulse voltages)


## Example

- Installation altitude: $4,000 \mathrm{~m}$
- Rated voltage: 12kV
- Power frequency withstand voltage: 28 kV rms
- Lightning impulse withstand voltage: 75 kV peak
- According to the above formular, $\mathrm{Ka}=1.44$
- Power frequency withstand voltage to be selected
: $28 \times 1.44=40.3 \mathrm{kV}$ rms
- Lightning impulse withstand voltage to be selected : $75 \times 1.44=108 \mathrm{kV}$ peak


## Altitude correction factors for current

According to ANSI standard, for unusual conditions such as altitude, it is recommended the use of correction factors for the current and voltage as follows:

| Altitude (m) | 1,000 | 1,200 | 1,400 | 1,600 | 1,800 | 2,000 | 2,500 | 3,000 | 3,500 | 4,000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Altitude ( ft ) | 3,280 | 3,940 | 4,600 | 5,250 | 5,900 | 6,560 | 8,200 | 9,840 | 11,500 | 13,125 |
| ACF for current | 1.00 | 0.996 | 0.992 | 0.988 | 0.984 | 0.980 | 0.970 | 0.960 | 0.950 | 0.940 |
| ACF for voltage | 1.00 | 0.98 | 0.96 | 0.94 | 0.92 | 0.90 | 0.85 | 0.80 | 0.75 | 0.70 |

## Example

LS C-AIS with 630A of rated current in normal operating conditions has about $592 \mathrm{~A}(630 \times 0.940=592 \mathrm{~A})$ capability at $4,000 \mathrm{~m}$ altitude. But it will have no problem in the majority of cases because switchgear is not often applied at the limits of its rated current capability for most applications.

## Distortion of gas insulated electrical equipment

The atmospheric pressure decreases with an increase in altitude. In case of gas insulated electrical equipment such as LBS, the tank might be able to distorted due to the larger pressure difference between inside and outside of the tank at high altitude. So, for high altitude installation the equipment should be examined whether it works normally.

## Example

The absolute pressure of SF6 gas in LS LBS is 125 kPa . As the altitude increases, higher pressure is caused to the tank by the decreasing atmospheric pressure. At 4,000m altitude, the pressure difference between the inside and outside of the tank is 2.67 times bigger than at 0 m .

| Altitude above sea level (m) | 0 | 1,000 | 2,000 | 3,000 | 4,000 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Internal pressure of LBS: SF6 gas (kPa) | 125 | 125 | 125 | 125 | 125 |
| External pressure of LBS: Absolute atmospheric pressure (kPa) | 101.33 | 89.87 | 79.50 | 70.11 | 61.64 |

LS has examined the normal operation and capability of LBS under the same pressure difference condition as at $4,000 \mathrm{~m}$ altitude.

## Main circuit structure with high reliability

## SM VCB

 (Side mount breaker)Breaker

| 1 Insulation rod | 4 Vacuum interrupter |
| :--- | :--- |
| 2 Lower terminal | 5 Upper terminal |
| 3 Shunt |  |




## Vacuum Interrupter (V)

The vacuum rate within the VI is very high the contacts are made of special alloy (copper(approximately $5 \times 10^{-5}$ Torr) and the spacing chromium) and the interior is completely between fixed contact and movable contact is about $6 \sim 20 \mathrm{~mm}$, depending on the voltage.
The contacts are in a structure that arc can easily be extinguished and the surfaces of
sealed to prevent loss of vacuum.
Therefore the wearing of the contacts can be minimized in the event of short-circuit and the arc energy by overvoltage or switching can be reduced effectively.

## Ratings



| Insulation level |  |  | SVL-06■20,25 $\square 06,13$ |  | SVL-12 $\square 16,20,25 \square 06,13$ |  | SVL-17 $\square 16,20,25 \square 06,13$ |  | SVL-20 $\square 16,20,25 \square 06,13$ |  | SVL-25 $\square 16,20,25 \square 06,13$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated voltage |  | Ur (kV) | 7.2 |  | 12 |  | 17.5 |  | 24 |  | 25.8 |  |
| Rated normal current |  | Ir (A) | 630 | 1250 | 630 | 1250 | 630 | 1250 | 630 | 1250 | 630 | 1250 |
| Phase distance |  | (mm) | 210 (Fixed), 230 (Fixed/Withdrawable), 254 (Fixed) |  |  |  |  |  |  |  |  |  |
| Weight (Fixed type) |  | (kg) | 80, 90 (Phase distance 254 only) |  |  |  |  |  |  |  |  |  |
| Weight (Withdrawable type) |  | (kg) | 85 |  |  |  |  |  |  |  |  |  |
| Rated frequency |  | $\mathrm{fr}(\mathrm{Hz})$ | 50/60 |  |  |  |  |  |  |  |  |  |
| Rated short-circuit current |  | Isc (kA) | 20, 25 |  | 16, 20, 25 |  |  |  |  |  |  |  |
| Rated short-circuit breaking capacity |  | (MVA) | 249,312 |  | 333, 415, 520 |  | 485, 606, 758 |  | 665, 831, 1039 |  | 715, 894, 1117 |  |
| Rated short-time withstand current |  | Ik/tk(kA) | 16/3 (4*), 20/3 (4*), 25/3 (4*) |  |  |  |  |  |  |  |  |  |
| Rated short-circuit making current |  | lp (kA) | $2.5 \mathrm{Isc}(50 \mathrm{~Hz}) / 2.6 \mathrm{lsc}(60 \mathrm{~Hz})$ |  |  |  |  |  |  |  |  |  |
| Rated breaking time |  | (cycle) | 3 |  |  |  |  |  |  |  |  |  |
| Rated withstand voltage | Power frequency | Ud (kV) | 20 |  | 28 |  | 38 |  | 50 |  | 60 |  |
|  | Impulse | - |  |  |  |  |  |  |  |  |  |  |
| Rated operating sequence |  |  | O-0.3s-CO-15s-CO |  |  |  |  |  |  |  |  |  |
| Control voltage | Closing coil | (V) | DC 24~30V, DC 48~60V, DC 110V, DC 125V, DC 220V, AC 48V, AC 100~130V, AC 220~250V |  |  |  |  |  |  |  |  |  |
|  | Trip coil | (V) | DC 24~30V, DC 48~60V, DC 110V, DC 125V, DC 220V, AC 48V, AC 100~130V, AC 220~250V |  |  |  |  |  |  |  |  |  |
| Auxiliary contacts |  |  | 4a4b, 10a10b |  |  |  |  |  |  |  |  |  |
| Rated opening time |  | (s) | $\leq 0.04$ |  |  |  |  |  |  |  |  |  |
| No-load closing time |  | (s) | $\leq 0.07$ |  |  |  |  |  |  |  |  |  |
| Type test class | Mechanical |  | M2 |  |  |  |  |  |  |  |  |  |
|  | Electrical |  | E2 (List3) |  |  |  |  |  |  |  |  |  |
|  | Capacitive current switching |  | C2 |  |  |  |  |  |  |  |  |  |
| Type | Fixed type |  | R/L type |  |  |  |  |  |  |  |  |  |
|  | Withdrawable type |  | S/T type |  |  |  |  |  |  |  |  |  |
| Standards |  |  | IEC62271-100 |  |  |  |  |  |  |  |  |  |

[^0]
## SM VCB

## Types and ordering information

| SVL |  | $06$ |  |  |  | $20$ |  |  |  | 06 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basic model name |  | Rated voltage (kV) |  | Version |  | Interrupting current (kA) |  | Phase distance / Compatibility |  | Rated current (A) |  |
| SVL | SM VCB | 06 | 7.2 | R | Fixed type right | 16 | 16 | B | 210 mm | 06 | 630A |
|  |  | 12 | 12 | L | Fixed type left | 20 | 20 | H | 230 mm | 13 | 1250A |
|  |  | 17 | 17.5 | S | Withdrawable type right | 25 | 25 | C | 254 mm |  |  |
|  |  | 20 | 24 | T | Withdrawable type left | * 7.2 kV Model $20,25 \mathrm{kA}$ only |  | * 230 (Withdrawable type only) |  |  |  |
|  |  | 25 | 25.8 |  |  |  |  |  |  |  |  |


4. If A1 (Sencondary trip coil) is selected, Auxiliary contacts is max 9a9b
5. If A2 (Sencondary trip coil with TCS contact) are selected, Auxiliary contacts is max 4a3b, 9a8b
6. If AV (CTC 1A), AW (CTC 5A) are selected, Auxiliary contacts is max 4a4b
7. AV (CTC 1A), AW (CTC 5A), SA4 (10a10b), SA8(10a10b) are only available on phase distance 254 mm

## Control circuit diagram

## SM VCB Dimensions

## 24kV, 25kA, 1250A

Fixed (Right type, phase distance 210mm)



DETAIL A


[^1]3. If using mounting hole 02, four brackets attached to the frame for mounting hole 01 can be removed.

24kV, 25kA, 1250A
Fixed (Right type, phase distance 230mm)


[^2]3. If using mounting hole 02 , four brackets attached to the frame for mounting hole 01 can be removed.

## SM VCB Dimensions

24kV, 25kA, 1250A
Fixed (Right type, phase distance 254mm)


[^3]3. If using mounting hole 02, four brackets attached to the frame for mounting hole 01 can be removed.

24kV, 25kA, 1250A
Fixed (Left type, phase distance 210mm)


[^4]3. If using mounting Hole 02, four brackets attached to the frame for mounting hole 01 can be removed.

## SM VCB Dimensions

24kV, 25kA, 1250A
Fixed (Left type, phase distance 230mm)



24kV, 25kA, 1250A
Fixed (Left type, phase distance 254mm)


## Note)

1. Mounting hole 01 for compact AIS pane
2. Mounting hole 02 for using SM VCB only
3. If using mounting hole 02, four brackets attached to the frame for mounting hole 01 can be removed.

SM VCB Dimensions

24kV, 25kA, 1250A
Withdrawable (Right type, phase distance 230mm)


24kV, 25kA, 1250A
Withdrawable (Left type, phase distance 230mm)


## SM VCB Accessories

If accessories are attached to the breaker, the function of the breaker is upgraded.
Susol VCB provides a variety of accessories depending on the purpose.


Breaker

| 1 Motor | 7 Keylock |
| :--- | :--- |
| 2 Closing coil | $\mathbf{8}$ Button padlock |
| 3 Trip coil | $\mathbf{9}$ Button cover |
| 4 Counter | 10 CTC (Current trip coil) |
| 5 Auxiliary contacts | III Changeable terminal |
| 6 UVT coil |  |

## Motor / Closing / Trip

Rated operation and control voltage range

| Item |  | Susol VCB |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | VL: 7.2 kV 8/12.5kA | VL: 20/25kA | VH |
| Motor | AC | 85~110\% | 85~110\% | 85~110\% |
|  | DC | 75~110\% | 85~110\% | 85~110\% |
| Closing | AC | 85~110\% | 85~110\% | 85~110\% |
|  | DC | 75~125\% | 85~110\% | 85~110\% |
| Trip | AC | 60~125\% | 85~110\% | 85~110\% |
|  | DC | 60~125\% | 70~110\% | 70~110\% |
| Applied standards |  | IEC62271-100 (2008) <br> KSC4611 | IEC62271-100 (2008) | IEC62271-100 (2008) |

Motor: M


- Charge the closing spring of a circuit breaker by the external power source. When the charging is complete, control power of the motor will be "OFF" by the built-in Limit S/W. Without the external power source, charge manually.

Operating voltage range (IEC 60947)
85\%~110\%Vn

|  | SVL type |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input voltage (Vn) | $\begin{gathered} \text { DC 24~ } \\ 30 \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { DC 48~ } \\ 60 \mathrm{~V} \end{gathered}$ | DC 110V | DC 125V | DC 220V | AC 48V | $\begin{gathered} \text { AC 100~ } \\ 130 \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { AC 200~ } \\ 250 \mathrm{~V} \end{gathered}$ |
| Load current (A) | $\leq 5$ | $\leq 3$ | $\leq 1$ | $\leq 1$ | $\leq 0.5$ | $\leq 3$ | $\leq 1$ | $\leq 0.5$ |
| Starting current (A) | 5 times of load current |  |  |  |  |  |  |  |
| Charge time | Within 5 sec . |  |  |  |  |  |  |  |

## SM VCB Accessories

Closing coil: C


- It is a control device which closes a circuit breaker, when applying voltage continuously or instantaneously over 200ms to the coil control terminals.

| Input voltage (Vn) | SVL type |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { DC 24~ } \\ 30 \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { DC 48~ } \\ 60 \mathrm{~V} \end{gathered}$ | DC 110V | DC 125V | DC 220V | AC 48V | $\begin{gathered} \text { AC 100~ } \\ 130 \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { AC 200~ } \\ 250 \mathrm{~V} \end{gathered}$ |
| Power consumption (inrush, W) | 200 |  |  |  |  |  |  |  |
| Power consumption (steady, W) | $\leq 5$ |  |  |  |  |  |  |  |

Note) Rated operation and control voltage range, see page 25.

Trip coil: T


- It is a control device which trips a circuit breaker from remote place, when applying voltage continuously or instantaneously over 35 ms to coil control terminals.
- When UVT coil is installed, its location is changed.

| Input voltage (Vn) | SVL type |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { DC 24~ } \\ 30 \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { DC 48~ } \\ 60 \mathrm{~V} \end{gathered}$ | DC 110V | DC 125V | DC 220V | AC 48V | AC 100~ <br> 130 V | $\begin{aligned} & \text { AC 200~ } \\ & 250 \mathrm{~V} \end{aligned}$ |
| Power consumption (inrush, W) | 200 |  |  |  |  |  |  |  |
| Power consumption (steady, W) | $\leq 5$ |  |  |  |  |  |  |  |

Note) Rated operation and control voltage range, see page 25.

## Secondary trip coil: A1



- It is a control device which trips a circuit breaker doubly from the outside. If the trip coil (T) fails, it can trip a circuit breaker safely.
- Trip coil: Install it at existing location.
- Secondary trip coil: Install it on the right side of the trip coil.
- It is not available with UVT coil when installing secondary trip coil.


## Current trip coil: AV, AW



- This trip coil uses the output of the CT as its control power source and is used with over current relay in combination. Two current trip coils are supplied.
- Coil burden is 90VA.(T9)
- Coil impedance(Z) is like below
$-3 A: 10 \Omega$ or less, Operating current AC 3A (T9)
- 1A: $160 \Omega$ or less, Operating current AC 1 A (AV)
- $5 \mathrm{~A}: 6 \Omega$ or less, Operating current is AC 5A (AW)
- CT must be installed at load side.

If it is installed at bus side there is the danger of malfunction or damage to CT.

- Don't disconnect the control power connector on main power is live condition at service position.
Otherwise there is the danger of malfunction or damage to CT.

[^5]
## Auxiliary contact: SA



## Counter: C



- It displays the total number of ON/OFF operations of a breaker.


## Under voltage trip coil: U



- It is installed inside of a breaker to trip when the main power or control power voltage drops below certain value.
Instantaneous type is only available with UVT coil and Time delay type is available by connecting UVT coil and UVT time delay controller.
- The closing of a circuit breaker is impossible mechanically or electrically if control power is not supplied to UVT.
To close the circuit breaker, 65~85\% of rated voltage should be applied.
- UVT and secondary trip coil will not be selected together.

1. UVT rated voltage and characteristic

- Operating voltage range: Pick up 0.65~0.85Vn, Drop out 0.4~0.6Vn
- Operating voltage ranges based on the minimum value of each rated voltage (Vn)

|  | SVL type |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input voltage (Vn) | $\begin{gathered} \text { DC 24~ } \\ 30 \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { DC 48~ } \\ 60 \mathrm{~V} \end{gathered}$ | DC 110V | DC 125V | DC 220V | AC 48V | $\begin{gathered} \text { AC } 100 \sim \\ 130 \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { AC 200~ } \\ 250 \mathrm{~V} \end{gathered}$ |
| Power consumption (inrush, W) | 200 |  |  |  |  |  |  |  |
| Power consumption (steady, W) | $\leq 5$ |  |  |  |  |  |  |  |

Keylock: A7


- The key is to unlock the locking device first to close the breaker electrically and mechanically.


## *How to operate

- It is not possible to pull out the key in the unlocked position, possible only in locked status.
- Pushing "OFF" switch of a breaker turn the key counter-clockwise to the locked position and pull it out.
- It is not possible to close the breaker
electrically and mechanically in the locked position.
- Insert the key and turn clockwise and then the breaker can be closed electrically and mechanically.


Button cover: A9


- It is a protection cover to prevent an accident due to unintended operation of ON/OFF button.
- Use the push-bar to operate the ON/OFF button.


A type connector

Plug/terminal for lead wire: AB


A type connector

- It is the connect with the control circuit of a breaker from outside. (supply wire length: 2 m )



# Switch with safety and convenience of maintenance cost 

 SMLBS (Side mount LBS)| Insulation level |  |  | Indoor |
| :---: | :---: | :---: | :---: |
| Rated voltage |  | (kV) | 12 / 17.5 / 24 |
| Rated current | Cable switch, Busbar | (A) | 630 |
|  | Circuit breaker | (A) | 630/1250 |
| Rated frequency |  | (Hz) | 50 / 60 |
| Rated short-time withstand current |  | (kA/3s) | 21 (25kA/1s) |
| Power frequency withstand voltage | Between ground and phase | (kV/1min.) | 28/38/50 |
|  | Between the open contact of the switch disconnector | $(\mathrm{kV} / 1.2 \times 50 \mu \mathrm{~s})$ | 32/45/60 |
| Impulse withstand voltage | Between ground and phase | (kV/1min.) | 75/95/125 |
|  | Between the open contact of the switch disconnector | $(\mathrm{kV} / 1.2 \times 50 \mu \mathrm{~s})$ | 85/110/145 |
| Operation method | LBS Switch / Fuse |  | Manual / Motor (Option) |
|  | ES |  | Manual |
| Motor operating voltage |  | (V) | AC/DC 110/230, DC 24, DC48 |
| Insulation method |  |  | SF6 Gas |
| Electrical durability | LBS |  | E3 |
|  | Internal ES |  | E1 |
| Mechanical durability | LBS |  | M1 |
|  | Internal ES |  | мо |
| Standard |  |  | IEC 62271-1, 102, 103, 105 |

## Types and ordering information



## SM LBS

## LS type 4Vdc-48Vdc



## Characteristics of components

$\mathrm{SF}_{6}$ disconnecting unit is equipped with switch disconnector and earthing switch fitted with separated and interlocked operating mechanism.

(1) Insulator
(2) Upper terminal
(3) Lower terminal
(4) Electrical field adapter only for 24 kV
(5) Stainless steel body
(6) Operating mechanisms box
(1) Switch-disconnector operating seat
(8) Earthing-switch operating seat
(4) Inspection window
(11) Key interlock
(11) Manometer
(12) Voltage signalling lamp
(13) Safety valve

## LF type 4Vdc-48Vdc



## Characteristics of components

Structurally, F-LBS is similar to LBS switch disconnector but it is equipped with fuse-holder and downstream fuses air insulated earthing switch and release system activated by fuse striker and shunt-trip coil (optional).
F-LBS is equipped with switch-disconnector and earthing switch fitted with separated and inter locked operating mechanism.

(1) Insulator
(2) Upper terminal
(3) Lower terminal
(4) Electrical field adapter only for 24 kV
(5) Stainless steel body
(6) Operating mechanisms box
(7) Switch-disconnector operating seat
(8) Earthing-switch operating seat
(4) Inspection window
(11) Key interlock
(11) Manometer
(12) Voltage signalling lamp
(13) Safety valve
(4) Fuse striker link
(15) External earthing switch
(1) Fuse link

## LS type 24Vdc-48Vdc



## LS type 110Vdc



LF type 24Vdc-48Vdc


## LF type 110Vdc


--) Connection to 14 pin connector
$\Rightarrow$ Motor connection
N.B.:Electrical diagram with open earthing switch and without auxiliary voltage

## SM LBS Dimensions

LS type 24kV, 21kA, 630A



## Options for Compact AIS

Current transformer (WS-261[W][R])


| Section |  | Contents |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Highest voltage for equipment | kV | 7.2 | 12 | 17.5 | 24 |
| Rated power frequency withstand voltage (1min) | kV | 20 | 28 | 38 | 50 |
| Rated lighting impulse withstand voltage | kV | 60 | 75 | 95 | 125 |
| Rated frequency | Hz | 50 or 60 |  |  |  |
| Rated primary current | A | 30 to 600 |  |  |  |
| Rated continuous thermal current | X In | 1.2 |  |  |  |
| Rated secondary current | A | 5 or 1 |  |  |  |
| Rated short-time thermal current 1 lh ( 1 sec ) | max.kA | 50 |  |  |  |
| Rated dynamic current Idyn (2.5x\|th) | max.kA | 125 |  |  |  |
| Number of cores | max. | 2 |  |  |  |
| Weight (approx.) | kg | 48 |  |  |  |
| Applying Standards |  | IEC 61869-2, IEEE C57.13, KS C 1706, JEC 1201 |  |  |  |
| Model designation |  | WS-261 |  |  |  |

## Voltage transformer (PE-28N)

| Techinical Data |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Highest voltage for equipment | kV | 12 | 17.5 | 24 |
| Rated power frequency withstand voltage (1min) | kV | 28 | 38 | 50 |
| Rated lighting impulse withstand voltage | kV | 75 | 95 | 125 |
| Rated frequency | Hz | 50 or 60 | 50 or 60 | 50 or 60 |
| Rated primary voltage | V | $11000 \sqrt{ } 3$ | $13800 \sqrt{ } 3$ | $22000 \sqrt{ } 3$ |
| Rated secondary voltage | V | $110 \sqrt{ } 3$ | $110 \sqrt{ } 3$ | $110 \sqrt{ } 3$ |
| Rated voltage factor/cont |  | 1.9/8h | 1.9/8h | 1.9/8h |
| Rated burden | VA | 50 | 50 | 50 |
| Weight (approx.) | kg | 38 | 38 | 38 |
| Applying Standards | IEC 61869-3, IEEE C57.13, KS C 1706, JEC 1201 |  |  |  |
| Model designation | PE-28N |  |  |  |



## Voltage detector (VDS)

Voltage detector is used to verify the presence ("Voltage Present") and absence ("No Voltage Present") condition in medium voltage switchgears, electrical equipment or of work places when working under voltage.

## Power fuse (SIBA)

Fuse ratings for C-AIS units mainly depend on the following criteria.

1) Service voltage 2) Transformer rating 3) Fuse technology (maker)

| Rated voltage | Article | Rated current | Length | Diameter |
| :---: | :---: | :---: | :---: | :---: |
| kV | - | A | $\mathbf{m m}$ | $\mathbf{M m}$ |
| $10 / 24$ | 3000613 | $6,3 \sim 40$ |  | 53 |



## XGIPAM

XGIPAM is the digital integrated protection \& monitoring device solution for more convenient and reliable power protection and monitoring system through the easy interface, user friendly, high accuarcy and high reliability.

- Protection function - 50/51, 50/51N, 67G, 67N, 59, 27, 64, 47, 46, 49, 48/51LR, 79, 87T, 37, 66
- 8.4 inch large touch screen color TFT LCD
- System MIMIC diagram
- Modular design of H/W and S/W with flexibility
- Setting for the secondary rating of PT: 110 or $110 / \sqrt{ } 3$
- Wave capture available
- Waveform recording for the state changes of equipment
- Dedicated PC manager program supported
- Supporting dual independent systems through two built-in communication ports
- $0.2 \%$ of the voltage and current measurement accuracy


## GIPAM2000



GIPAM2000 is a digital integrated protection \& monitoring device and monitoring device providing various protective elements and measurement elements for fault monitoring and protection and comprehensive monitoring of the distribution equipments.

- Protection function - 50/51, 50/51N, 67G, 67N, 59, 27, 64, 47, 46, 49, 48/51LR, 79, 87T
- Covering PLC (Programmable logic controller) functions
- $320 \times 240$ Graphic LCD \& MIMIC diagram
- SOE (Sequence of event) function
- Recording event \& fault functions
- Displaying harmonic spectrum, THD (Total harmonic distortion)
- Combination of the two elements of characteristic curve of the relay should be available
- Power and current demand should be measured


## GIPAM10



GIPAM10 series provide accurate measurement and monitoring information necessary for efficient maintenance and post-fault analysis.

- Protection function - $50 / 51,50 / 51 \mathrm{~N}, 46,79,59,27,47 \mathrm{P}, 64,67 \mathrm{G}, 67 \mathrm{~N}$
- Communication: Modbus
- Wave/fault/event recording
- DO latch function, trip DO and alarm DO setting
- Available to set up setting group up to 3 (GIPAM 10CU/10CR)
- Wave/fault/event recording


## Order form

## Compact AIS - LU (Load break switch unit)

| Basic cubicle |  |  |  | Quantity |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rated voltage, Ur | 12kV | 17.5kV | 24 kV |  |  |
| Service voltage |  |  |  | (kV) |  |
| Short-circuit current, Isc |  |  |  | (kA) |  |
| Rated current, Ir |  |  |  | (A) |  |
| Internal arc withstand | None | 21kA/1s | A-FLR |  |  |
| Position in the switchboard | First on left | Middle | Last on right |  |  |


| Option |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Electrical driving motorization | $\begin{aligned} & 24 \mathrm{Vdc} \\ & 48 \mathrm{Vdc} \end{aligned}$ | 110 Vdc | 110 Vac <br> 220 Vac |  |
| Auxiliary contacts $\mathbf{2 N O}+2 \mathrm{NC}$ main |  |  |  |  |
| Auxiliary contacts $2 \mathrm{NO}+2 \mathrm{NC} \mathrm{E/S}$ |  |  |  |  |
| Key lock | LBS Open LBS Close |  | E/S Open <br> E/S Close | (Selection recommended) |
| Pressure gauge | None | Presence |  |  |
| Voltage detection system | None | Presence |  |  |
| Control voltage (Including lamp) | 24 Vdc 48 Vdc | 110 Vdc | 110 Vac <br> 220 Vac |  |
| Low voltage control cabinet | Default only | Add. top |  |  |
| Heater with thermostat | 50W | 100W |  |  |
| Surge arrestor (Width 500) | 12kV | 17.5kV | 24kV |  |

## Compact AIS - FU (Fuse switch combination unit)



| Option |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Fuses |  |  |  |  |
| Electrical driving motorization | 24 Vdc 48 Vdc | 110 Vdc | 110 Vac <br> 220 Vac |  |
| Auxiliary contacts 2NO+2NC main |  |  |  |  |
| Auxiliary contacts 2NO+2NC E/S |  |  |  |  |
| Blown fuse signalling contact |  |  |  |  |
| Key lock | LBS Open LBS Close |  | E/S Open <br> E/S Close | (Selection recommended) |
| Pressure gauge | None | Presence |  |  |
| Voltage detection system | None | Presence |  |  |
| Control voltage (Including lamp) | 24 Vdc 48 Vdc | 110 Vdc | 110 Vac <br> 220 Vac |  |
| Low voltage control cabinet | Default only | Add. top |  |  |
| Heater with thermostat | 50W | 100W |  |  |
| Surge arrestor (Width 500) | 12 kV | 17.5kV | 24kV |  |

## Order form

## Compact AIS - PU (Voltage transformer unit)

| Basic cubicle |  |  |  | Quantity |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rated voltage, Ur | 12kV | 17.5kV | 24kV |  |  |
| Service voltage |  |  |  | (kV) |  |
| Short-circuit current, Isc |  |  |  | (kA) |  |
| Rated current, Ir |  |  |  | (A) |  |
| Internal arc withstand | None | 21kA/1s | A-FLR |  |  |
| Position in the switchboard | First on left | Middle | Last on right |  |  |
| VT | See p. 44 |  |  |  |  |



## Compact AIS - CU-A/CU-W (Circuit breaker unit)

| Basic cubicle |  |  | Quantity |  |
| :---: | :---: | :---: | :---: | :---: |
| Rated voltage, Ur | 12kV | 17.5kV | 24 kV |  |
| Service voltage |  |  |  | (kV) |
| Short-circuit current, Isc |  |  |  | (kA) |
| Rated current, Ir |  |  |  | (A) |
| Internal arc withstand | None | 21kA/s | A-FLR |  |
| Position in the switchboard | First on left | Middle | Last on right |  |
| Vacuum ciruit breaker type | Fixed | Withdrawable |  |  |
| CT |  |  |  | See p. 44 |
| Protection relay | Gipam 10 | Gipam 2000 | X-Gipam | For others, discussion is needed. |
| Earthing switch at cable side | $\begin{array}{r} \text { E0 } \\ \text { Lock Coil } \end{array}$ | E1 vD | 4a4b | (Short-circuit making capacity) <br> (4a4b contact is default.) |


| Option |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Electrical driving motorization | $\begin{aligned} & 24 \mathrm{Vdc} \\ & 48 \mathrm{Vdc} \end{aligned}$ | 110 Vdc | $110 \mathrm{Vac}$ $220 \mathrm{Vac}$ |  |
| Auxiliary contacts $2 \mathrm{NO}+2 \mathrm{NC}$ main |  |  |  |  |
| Auxiliary contacts 2NO+2NC E/S |  |  |  |  |
| Key lock | LBS Open LBS Close |  | E/S Open <br> E/S Close |  |
| Pressure gauge | None | Presence |  | (Selection recommended) |
| Voltage detection system | None | Presence |  |  |
| Control voltage (Including lamp) | 24 Vdc <br> 48 Vdc | 110 Vdc | 110 Vac <br> 220 Vac |  |
| Low voltage control cabinet | Default only | Add. top |  |  |
| Heater with thermostat | 50W | 100W |  |  |

## Order form

## Compact AIS - CU-AP (Circuit breaker unit with PT)

| Basic cubicle |  |  |  | Quantity |
| :---: | :---: | :---: | :---: | :---: |
| Rated voltage, Ur | 12kV | 17.5kV | 24kV |  |
| Service voltage |  |  |  | (kV) |
| Short-circuit current, Isc |  |  |  | (kA) |
| Rated current, Ir |  |  |  | (A) |
| Internal arc withstand | None | 21kA/s | A-FLR |  |
| Position in the switchboard | First on left | Middle | Last on right |  |
| Vacuum ciruit breaker type | Fixed |  |  |  |
| CT |  |  |  | See p. 44 |
| VT |  |  |  | See p. 44 |
| Protection relay | Gipam 10 | Gipam 2000 | X-Gipam | For others, discussion is needed. |
| Earthing switch at cable side | $\begin{array}{r} \text { E0 } \\ \text { Lock Coil } \end{array}$ | E1 vD | 4a4b | (Short-circuit making capacity) <br> (4a4b contact is defaul.) |


| Option |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Electrical driving motorization | 24 Vdc <br> 48 Vdc | 110 Vdc | 110 Vac <br> 220 Vac |  |
| Auxiliary contacts 2NO+2NC main |  |  |  |  |
| Auxiliary contacts 2NO+2NC E/S |  |  |  |  |
| Key lock | LBS Open LBS Close |  | E/S Open <br> E/S Close | (Selection recommended) |
| Pressure gauge | None | Presence |  |  |
| Voltage detection system | None | Presence |  |  |
| Control voltage (Including lamp) | 24 Vdc <br> 48 Vdc | 110 Vdc | 110 Vac <br> 220 Vac |  |
| Low voltage control cabinet | Default only | Add. top |  |  |
| Heater with thermostat | 50W | 100W |  |  |
| Block type CT |  |  |  | 250 mm box is added. |

## Compact AIS - GAU (Incoming cable-connection unit)

| Basic cubicle |  |  | Quantity |  |
| :---: | :---: | :---: | :---: | :---: |
| Rated voltage, Ur | 12kV | 17.5kV | 24kV |  |
| Service voltage |  |  |  | (kV) |
| Short-circuit current, Isc |  |  |  | (KA) |
| Rated current, Ir |  |  |  | (A) |
| Internal arc withstand | None | $21 \mathrm{kA} / 1 \mathrm{~s}$ | A-FLR |  |
| Position in the switchboard | First on left | Middle | Last on right |  |
| Earthing switch at cable side | $\begin{array}{r} \text { E0 } \\ \text { Lock Coil } \end{array}$ | E1 vD | 4a4b | (Short-circuit making capacity) <br> (4a4b contact is default.) |


| Option |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Voltage detection system | None | Presence |  |  |
| Control voltage (Including lamp) | $\begin{aligned} & 24 \mathrm{Vdc} \\ & 48 \mathrm{Vdc} \end{aligned}$ | 110 Vdc | $\begin{aligned} & 110 \mathrm{Vac} \\ & 220 \mathrm{Vac} \end{aligned}$ |  |
| Low voltage control cabinet | Default only | Add. top |  |  |
| Heater with thermostat | 50W | 100W |  |  |
| Surge arrestor | 12kV | 17.5kV | 24kV |  |

## Order form

## Compact AIS - SU (Section unit)

| Basic cubicle |  |  |  | Quantity |
| :---: | :---: | :---: | :---: | :---: |
| Rated voltage, Ur | 12kV | 17.5kV | 24 kV |  |
| Service voltage |  |  |  | (kV) |
| Short-circuit current, Isc |  |  |  | (kA) |
| Rated current, Ir |  |  |  | (A) |
| Internal arc withstand | None | 21kA/s | A-FLR |  |
| Position in the switchboard | First on left | Middle | Last on right |  |
| Vacuum ciruit breaker type | Fixed |  |  |  |
| CT |  |  |  | See p. 44 |
| Protection relay | Gipam 10 | Gipam 2000 | X-Gipam | For others, discussion is needed. |


| Option |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Electrical driving motorization | 24 Vdc 48 Vdc | 110 Vdc | 110 Vac <br> 220 Vac |  |
| Auxiliary contacts 2NO+2NC main |  |  |  |  |
| Auxiliary contacts 2NO+2NC E/S |  |  |  |  |
| Key lock | LBS Open <br> LBS Close |  | E/S Open <br> E/S Close | (Selection recommended) |
| Pressure gauge | None | Presence |  |  |
| Voltage detection system | None | Presence |  |  |
| Control voltage (Including lamp) | 24 Vdc 48 Vdc | 110 Vdc | 110 Vac <br> 220 Vac |  |
| Low voltage control cabinet | Default only | Add. top |  |  |
| Heater with thermostat | 50W | 100W |  |  |

## Compact AIS - MU (Metering unit)




## Certificates

## ISO certification



ISO 9001


ISO 14001


OHSAS 18001

Test report (ASTA certi.)



We open up a brighter future through
efficient and convenient energy solutions.


#### Abstract

$1!$ Safety Instructions - For your safety, please read user's manual thoroughly before operating - Contact the nearest authorized service facility for examination, repair, or adjustment. - Please contact qualified service technician when you need maintenance.

Do not disassemble or repair by yourself! - Any maintenance and inspection shall be performed by the personnel having expertise concerned.




- According to The WEEE Directive, please do not discard the device with your household waste


## LSELECTRIC

## - Headquarter

127 LS-ro (Hogye-dong) Dongan-gu, Anyang-si, Gyeonggi-Do, 14119, Korea

## - Seoul Office

LS Yongsan Tower, 92, Hangang-daero, Yongsan-gu, Seoul, 04386, Korea Tel. 82-2-2034-4916, 4684, 4429

## ■ Overseas Subsidiaries

- LS ELECTRIC Japan Co., Ltd. (Tokyo, Japan) Tel: 81-3-6268-8241 E-Mail: japan@ls-electric.com
- LS ELECTRIC (Dalian) Co., Ltd. (Dalian, China) Tel: 86-411-8730-5872 E-Mail: china.dalian@lselectric.com.cn
- LS ELECTRIC (Wuxi) Co., Ltd. (Wuxi, China) Tel: 86-510-6851-6666 E-Mail: china.wuxi@lselectric.com.cn
- LS ELECTRIC Vietnam Co., Ltd. (Hanoi, Vietnam) Tel: 84-222-2221-110 E-Mail: vietnam@Is-electric.com
- LS ELECTRIC Middle East FZE (Dubai, U.A.E.) Tel: 971-4-886-5360 E-Mail: middleeast@ls-electric.com
- LS ELECTRIC Europe B.V. (Hoofddorp, Netherlands) Tel:31-20-654-1424 E-Mail: europartner@ls-electric.com
- LS ELECTRIC America Inc. (Chicago, USA) Tel: 1-800-891-2941 E-Mail: sales.us@lselectricamerica.com
- LS ENERGY SOLUTIONS LLC (Charlotte, USA)

Tel: 1-704-587-4051 E-Mail: cmfeldman@ls-es.com

- LS ELECTRIC Türkiye Co., Ltd. (Istanbul, Türkiye) Tel:90-212-806-1252 E-Mail: turkiye@ls-electric.com
- LS ELECTRIC IBERIA S.L.U. (Madrid, Spain) Tel: 34-910-28-02-74 E-Mail: iberia@ls-electric.com


## www.ls-electric.com

## - Overseas Branches

- LS ELECTRIC Tokyo Office (Japan) Tel: 81-3-6268-8241 E-Mail: tokyo@ls-electric.com
- LS ELECTRIC Beijing Office (China)

Tel: 86-10-5095-1631 E-Mail: china@lselectric.com.cn

- LS ELECTRIC Shanghai Office (China)

Tel: 86-21-5237-9977 E-Mail: china@lselectric.com.cn

- LS ELECTRIC Guangzhou Office (China)

Tel: 86-20-3818-2883 E-Mail: china@lselectric.com.cn

- LS ELECTRIC Chengdu Office (China)

Tel: 86-28-8670-3201 E-Mail: china@lselectric.com.cn

- LS ELECTRIC Qingdao Office (China)

Tel: 86-532-8501-2065 E-Mail: china@lselectric.com.cn

- LS ELECTRIC Nanjing Office (China)

Tel: 86-25-8467-0005 E-Mail: china@lselectric.com.cn

- LS ELECTRIC Bangkok Office (Thailand) Tel: 66-90-950-9683 E-Mail: thailand@ls-electric.com
- LS ELECTRIC Jakarta Office (Indonesia)

Tel: 62-21-2933-7614 E-Mail: indonesia@ls-electric.com

- LS ELECTRIC Moscow Office (Russia)

Tel: 7-499-682-6130 E-Mail: info@lselectric-ru.com

- LS ELECTRIC America Western Office (Santa Fe Springs, USA)

Tel: 1-562-903-5527 E-Mail: america@ls-electric.com

- LS ELECTRIC India Office (India)

Tel: 91-80-6142-9108 E-Mail: Info_india@ls-electric.com

- LS ELECTRIC Singapore Office (Singapore)

Tel: 65-6958-8162 E-Mail: singapore@ls-electric.com

- LS ELECTRIC Italy Office (Italy)

Tel: 39-030-8081-833 E-Mail: italia@ls-electric.com


[^0]:    Note) For C-AIS, only 230mm (phase to phase) right type SM VCB is available

[^1]:    1. Mounting hole 01 for compact AIS panel
    2. Mounting hole 02 for using SM VCB only
[^2]:    1. Mounting hole 01 for compact AIS pane
    2. Mounting hole 02 for using SM VCB only
[^3]:    Note)

    1. Mounting hole 01 for compact AIS panel
    2. Mounting hole 02 for using SM VCB only
[^4]:    1. Mounting hole 01 for compact AIS panel
    2. Mounting hole 02 for using SM VCB only
[^5]:    *T is recommended to use 15VA 5P10 and more.

